All about fruitarianism with a long-term fruitarian, Lena

History of Plant Studies: 

In the centuries following the time of Aristotle and his students, who made the first philosophical attempts to understand plants in their complexity, interest in herb plants was limited mainly to their medical usage. This changed in the sixteenth century when the first biological attempts were done to understand the basic principles of structure and function of plants. At first, studies were largely devoted to plant distribution, taxonomy, and morphology. Later, taking the lead from medicine, anatomy and cytology of plants were added to the curriculum of plant sciences, as studied in the early universities.

In fact, the cellular nature of living organisms was first elaborated using plants (Hooke 1665). By the end of the 19th century, it was realised that plants were even more similar to animals than had been thought hitherto.

  • For their reproduction, plants use identical sexual processes.
  • Plants attacked by pathogens develop immunity, using the corresponding processes and mechanisms in animals.
  • Both animals and plants use the same molecules and pathways to drive their circadian rhythms.

Critical mass of new data has been accumulated, culminating in the emergence of plant neurobiology.

Plants are intelligent organisms, which perform complex information processing. The word "neuron" was taken by animal neurobiologists from Greek where the original meaning of this word is vegetal fibre.

Auxin emerges as a plant-specific neurotransmitter. Roots are specialized not only for the uptake of nutrients, but also seem to support neuronal-like activities based on plant synapses. Vascular elements allow the rapid spread of hydraulic signals and action potentials, resembling nerves. Plants are capable of learning and make decisions about their future activities according to the actual environmental conditions. It is obvious that they possess a complex apparatus for the storage and processing of information.

Gottfried Wilhelm Leibniz

We live in the best of all possible worlds.

Vitamin A

Retinoids retinol, retinal, and retinoic acid - 3 active forms of vitamin A - "preformed" vitamin A.

Beta carotene can easily be converted to vitamin A by the human body. 

Large amounts of supplemental vitamin A (but not beta carotene) can be harmful to bones.

Vitamin A keeps tissues and skin healthy, plays an important role in bone growth. Diets rich in the carotenoids alpha carotene and lycopene seem to lower lung cancer risk. Carotenoids act as antioxidants. Foods rich in the carotenoids lutein and zeaxanthin may protect against cataracts. Essential for vision lycopene may lower prostate cancer risk.

Recommended daily amount: 700 mcg - 900 mcg or 3 mg - 6 mg beta-carotene (~ 1 cup of raw cantaloupe or sweet red peppers, or 2 mangoes, or 1/5 of one baked sweet potato). 

Because the body converts all dietary sources of vitamin A into retinol, 1 mcg of physiologically available retinol is equivalent to the following amounts from dietary sources: 1 mcg of retinol, 12 mcg of beta-carotene, and 24 mcg of alpha-carotene or beta-cryptoxanthin. From dietary supplements, the body converts 2 mcg of beta-carotene to 1 mcg of retinol.

Fruitarians.net Apple